THIOCARBONYL YLIDES. AN APPROACH TO "TETRAVALENT SULFUR" COMPOUNDS.

Richard M. Kellogg and Siek Wassenaar¹ Department of Organic Chemistry, The University, Bloemsingel 10, Groningen, The Netherlands (Received in UK 23 March 1970; accepted for publication 16 April 1970)

We wish to describe a rational approach to the generation of thiocarbonyl ylides, (1), a new class of reactive intermediates. Thiocarbonyl ylides, as depicted in eq. 1, may be described in terms of 1,3-dipolar², biradical, or "tetravalent sulfur"³⁻⁵ resonance structures.⁶ The previously described azomethine⁷ and carbonyl ylides⁸ are related formally to 1 by replacement of sulfur by nitrogen and oxygen, respectively.

Two orbital symmetry allowed⁹ paths for the generation of <u>1</u>, viewing it as isoelectronic with the allyl anion¹⁰, were considered. Most obvious was the conrotary electrocyclic ring-opening of an episulfide, a type of reaction which has been effected with appropriately substituted azirines⁷ and epoxides.⁸ An alternative and, for us, more successful attack on the problem makes use of the thermally induced loss of nitrogen from 1,3,4-thiadiazolines (<u>2</u>) which are, of course, the expected $4_s + 2_s$ cycloadducts of <u>1</u> with nitrogen (eq. 2).⁹

The pivotal compounds 2, cardinal to the latter approach, were obtained from the previously reported 1,3,4-thiadiazolidines¹¹ $\underline{3}$ which were dehydrogenated using diethylazodicarboxylate.¹² This dehydrogenation proceeds smoothly with $\underline{3a}$ at room temperature in ether solution to give stable 2a, in 54% yield, mp 81-82° (without decomposition); ir (KBr) 1579 cm⁻¹ (N=N); uv max (96% EtOH) 2890 Å (c 342) and 3220 Å (c 238).^{13,14}

Either in the melt at 100° or in hydrocarbon solution at 90° , <u>2a</u> loses nitrogen smoothly (eq. 3) to give in 99% yield the thirrane <u>4a</u>, mp 75-77°; mol. wt. (osmet. in C_6H_6) 198.2; uv max (96% EtOH) 2590 Å ($\varepsilon = 50$).¹⁵ Reaction with <u>n</u>-butyllithium¹⁶ in ether converted <u>4a</u> to cyclohexylidenecyclohexane in 77% yield. Attempts to intercept the suspected intermediate <u>1a</u> with either <u>trans</u>-stilbene or dimethyl acetylenedicarboxylate met with failure. However, when <u>2a</u> was allowed to decompose in the presence of an equimolar quantity of diethylazodicarboxylate a mixture was isolated consisting of <u>4a</u> (33% isolated) and <u>5a</u> (¹2% isolated), mp 65-67.5°, ir (KBr) 1710 cm⁻¹ (NC=0); nmr (CCl₄) & 4.10 (q, 4, J = 7.0 Hz, CCH₂), & 1.25 (t, 6, J = 7.0 Hz, CH₃), and & 1.36-2.11 (broad multiplet, 20, (CH₂)₅.¹⁴ Thirane <u>4a</u> fails to react with diethylazodicarboxylate under similar conditions.

Analogous reactions were carried out with the known <u>cis</u> and <u>trans-3b</u>.¹⁷ Here, however, an enormous difference was found in the thermal stability of <u>2b</u> as compared to <u>2a</u>. When equimolar amounts of <u>3b</u> and diethylazodicarboxylate in ether solution are held at -10° for 5 hr, diethylhydrazinodicarboxylate is formed in 73% yield along with an unstable compound [uv max (C₅H₁₂) <u>3180</u> Å and 2820 Å] which is most likely <u>2b</u>.¹⁸ Above 10° this unstable compound loses nitrogen and yields <u>cis</u> and <u>trans-2</u>,3-diethylthiirane (<u>4b</u>) and some <u>cis</u> and <u>trans-3-hexene</u> (<u>36%</u> combined yield after distillation) as well as some cycloaddition product <u>5b</u> (eq. 4).¹⁹ The latter compound, ir (neat) 1710 cm⁻¹, nmr (CCl₄) δ 5.48 (overlapping triplets, 2, J = 7.2 Hz, <u>t-C-H</u>), δ 4.23 (overlapping quartets, 4, J = 7.5 Hz, OCH₂), δ 1.40-2.00 (complex multiplet, 4, CH₂CH), δ 1.28 (t, 6, J = 7.5 Hz, CH₃), and δ 0.97 (overlapping triplets, 6, J = 7.2 Hz, CH₃) is obtained in 67% yield if an extra equivalent of diethylazodicarboxylate is added to the reaction mixture prior to warming to room temperature. If the unstable <u>2b</u> is warmed to room temperature in the presence of one equivalent of dimethylacetylene dicarboxylate, a 20% yield of 2,5-dihydrothiophene 6b (with expected spectra) is obtained.

These observations are congruous with our supposition that thiocarbonyl ylides should be generated during thermal decomposition of thiadiazolines $\underline{2}$. As expected, these intermediates cyclize readily to the thiiranes but also add to appropriately substituted 2π systems at a competitive rate. In this respect, their behavior agrees fully with that of azomethine and carbonyl ylides. We are now investigating the stereochemistry of the ring¹ closure and cycloaddition reactions of $\underline{2b}$.

Rather to our surprise, 2a, upon irradiation, lost sulfur cleanly to give cyclohexanone azine as the only demonstrable organic product (eq. 5).

This reaction pertains even at -170° in a methylcyclohexane matrix. This dichotomy of thermal and photochemical behavior may arise from the absence of an orbital symmetry allowed path for the loss of nitrogen from <u>2a</u> (assuming excitation to be centered in the azo chromophore) whereas a cheletropic⁹ elimination of sulfur is an allowed process. This reaction finds some precedent in the photochemically induced elimination of sulfur dioxide from butadiene sulfones.²⁰ <u>Acknowledgement</u>. We are indebted to Professors J. Strating and Hans Wynberg for their interest in this work. Dr. J.B.F.N. Engberts suggested diethylazodicarboxylate as a dehydrogenating agent.

REFERENCES

1. NATO Postdoctoral Fellow, 1969-1970.

- R. Huisgen, <u>Angew. Chem.</u>, <u>75</u>, 604 (1963) reviews 1,3-dipolar additions. For applications of orbital symmetry considerations see A. Eckell, R. Huisgen, R. Sustmann, G. Wallbillich, D. Grashey, and E. Spindler, <u>Chem. Ber.</u>, <u>100</u>, 2192 (1967); also E.M. Kosower, "An Introduction to Physical Organic Chemistry", John Wiley and Sons, Inc., New York, N.Y. 1968, pp 209-218.
 "Tetravalent sulfur" isomers of thiophene have been synthesized by Cava⁴ and Schlessinger.⁵
- 4. M.P. Cava and G.E.M. Husbands, J. Amer. Chem. Soc., 91, 3952 (1969).
- 5. J.D. Bower and R.H. Schlessinger, *ibid.*, *91*, 6891 (1969).
- 6. Other resonance structures can be drawn, of course. We assume here that the carbon substituents are coplanar. Should significant d orbital participation be involved in the stabilization of <u>1</u>, C-<u>S</u>=C, then the cylindrical symmetry of these orbitals might possibly lead to an essentially orthogonal arrangement of substituents.
- 7. See, for example: R. Huisgen, W. Scheer, and H. Huber, <u>J. Amer. Chem. Soc.</u>, <u>89</u>, 1753 (1967) and references contained therein. Also R. Huisgen and H. Mäder, Angew. Chem., 81, 621 (1969).
- 8. W.J. Linn and R.E. Benson, J. Amer. Chem. Soc., 87, 3657 (1965).
- 9. R.B. Woodward and R. Hoffmann, Angew. Chem., 81, 797 (1969).
- 10. R. Hoffmann, J. Amer. Chem. Soc., 90, 1475 (1968) for discussion of carbonyl ylides.
- 11. K. Rühlmann, J. Prakt. Chem., 8, 285 (1959).
- 12. F. Yoneda, K. Suzuki, and Y. Nitta, J. Amer. Chem. Soc., 88, 2328 (1966).
- Compare with data of C.G. Overberger, N. Weinshenker, and J.-P. Anselme, <u>ibid</u>., <u>86</u>, 5364 (1964) for a Δ¹-pyrazoline; also N. Rieber, J. Alberts, J.A. Lipsky, and D.M. Lemal, <u>ibid</u>., <u>91</u>, 5668 (1969).
- 14. Correct elemental analyses were obtained for all new compounds; mass spectra accorded fully with assigned structures.
- Absorption at <u>ca</u> 2600 Å is characteristic of episulfides: R.E. Davis, <u>J. Org. Chem.</u>, <u>23</u>, 216 (1958).
- 16. F.G. Bordwell, H.M. Andersen, and B.M. Pitt, <u>J. Amer. Chem. Soc.</u>, <u>76</u>, 1082 (1954).
- 17. A <u>cis, trans</u> mixture of <u>3b</u>, mp 68-75^o (lit.¹¹ mp 72^o) was obtained after painstaking recrystallization and sublimation. A portion of this work was most capably done by Miss Mieke Noteboom.
- 18. The cause of the enormous difference in stability of <u>2a</u> and <u>2b</u> might lie in inversion at C-2 and C-5 (ring flip with <u>2a</u>) during loss of nitrogen; cf. E.L. Allred and R.L. Smith, <u>J. Amer. Chem. Soc.</u>, <u>91</u>, 6766 (1969); H. Tanida, S. Teratake, Y. Hata, and M. Watanabe, <u>Tetrahedron Letters</u>, <u>1969</u>, 5341, 5345. But see A. Oberlimmer and C. Rüchardt, <u>ibid.</u>, <u>1969</u>, 4685.
- 19. The 3-hexenes apparently arise directly during the decomposition of <u>2b</u>.

20. J. Saltiel and L. Metts, <u>J. Amer. Chem. Soc</u>., <u>89</u>, 2232 (1967).